

Tomorrow is created here.

HUMAN BRAIN & BEHAVIOUR

AN INTRODUCTION TO HUMAN NEUROPSYCHOLOGY

Instructor Zachariah Campbell

Teaching Assistants Achalo Rodrigo & Laurie Hamel Lecture Details Mondays 1-3 PM (AA112) / Blackboard (WebOption) Contact (Office hours TBA on Blackboard) psyb65@utsc.utoronto.ca

COURSE OBJECTIVE

Neuropsychology is the study of the relationship between human behaviour and brain function. In this course, we will explore the structure and function of the human nervous system while contrasting between both normal behaviour and pathological presentations (neurological and psychiatric). In addition to structural/functional neuroanatomy, specific areas of coverage will include a history of neuropsychology, brain evolution, neurophysiology, psychopharmacology, neuroimaging techniques, neuropsychological assessment, and neurocognitive rehabilitation. Contributions from clinical and experimental neuropsychology will be explored in depth.

REQUIRED TEXTBOOK

Kolb, B. & Whishaw, I. Q. (2009). *Fundamentals of Human Neuropsychology* (6th ed.). New York, NY: Worth Publishers.

A print copy will be stocked by the bookstore. An etextbook version is also available at a discount (see Blackboard for details). Note: Use of earlier editions of this book is not advised due differing content.

The course will also utilize the Neuroscience Tool KIt which is an online learning tool that will which will be used in this course to enhance and evaluate your learning of key concepts through dynamic illustrations, animations, models, and interactive tutorials.

COURSE MATERIALS

All course materials including links to the recorded lectures, additional readings, links to media, and midterm grades will be made available exclusively on the **Blackboard Learning Portal**. Please be sure to check this site regularly to keep up with announcements made for this course.

IMPORTANT NOTES

Contact Information

All course related inquiries are to be directed to **psyb65@utsc.utoronto.ca**. We require that students contact us with their academic account (i.e., utsc or utoronto email) to abide by University policy and avoid fraudulent representation of your person. Email inquiries will be responded to within a reasonable time-frame (typically within 24-48 hours).

Required Pre-Requisites

Both Introductory Psychology: Part I (PSYA01H3) and Introductory Psychology: Part II (PSYA02H3) must be successfully completed to officially enroll in this course. Please note that there are no exceptions.

Required Pre-Requisite for other Courses

This course is a required pre-requisite for the following: Clinical Neuropsychology (PSYC31H3), Clinical Neuropsychology Laboratory (PSYC32H3), Cognitive Neuroscience (PSYC55H3), Diseases of the Brain and Mind (PSYC68H3), Clinical Psychopharmacology (PSYD35H3), and Current Topics in Human Brain and Behaviour (PSYD66H3).

Academic Integrity

The **Code of Behaviour on Academic Matters** outlines the behaviours that constitute academic dishonesty and the processes for addressing academic offences. Potential offences include, but are not limited to: 1) using/possessing unauthorized aids or looking at someone else's answers during an exam or test; 2) misrepresenting your identity or falsifying/altering any documentation required by the University such as doctor's notes.

AccessAbility Resources

Students with diverse learning styles and needs are welcome in this course. In particular, if you have a disability/health consideration that may require accommodations, please feel free to approach me and/or the AccessAbility Services as soon as possible. AccessAbility Services staff (located in Room SW302, Science Wing) are available by appointment to assess specific needs, provide referrals and arrange appropriate accommodations 416-287-7560 or email: ability@utsc.utoronto.ca.

GRADING SCHEME

Midterm Test

There will be a midterm test (multiple-choice format) that will contribute approximately 50% towards the final grade (depending on the scheduling of the midterm by the registrar & content covered to date). The exact coverage and format will be posted on the Blackboard once the specific date, time and location is officially determined by the Office of the Registrar.

Final Examination

The final examination (multiple-choice format) will be administered during the UTSC Final Examination Period (December 6-20). It will be worth approximately 50% and based on the the remaining content not covered by the midterm.

Neuroscience Tool Kit (Bonus)

In addition to the above evaluative components, an online and interactive learning program (i.e., Neuroscience Tool Kit) worth up to 5% will be assigned that has two objectives. First, through the viewing of animations, models, and interacting with responsive elements, difficult brain-behaviour concepts will be better understood. Second, by completing assigned quizzes, students will be able to improve their mark beyond what they earn collectively across the midterm and final examinations.

SESSIONAL DATES

Dates	Detail	
September 3	Classes begin	
September 16	Last day to add F and Y courses	
October 14	Thanksgiving (University closed)	
October 15-18	Reading Week	
November 18	Last day to drop F courses without academic penalty	
December 2	Last day of classes and term assignments	
December 3-5	Study Break	
December 5	Last day to drop F courses with a LWD indicationt	
December 6-20	Final examinations in F courses	
December 23	Beginning of December Break (University closed)	

*Regarding the Lecture Schedule, every effort will be made to maintain the posted lecture schedule but some deviation may occur depending on the content. Further, additional readings may be posted on the Blackboard.

LECTURE SCHEDULE

Lecture Date	Lecture Topic	Relevant Readings
September 9	Course Introduction & History of Neuropsychology	Chapter 1
September 16	Evolution of the Nervous System & Structural Neuroanatomy	Chapters 2 & 3
September 23	Functional Neuroanatomy & Neuroimaging Techniques	Chapters 6 & 10
September 30	Hemispheric Specialization & Behavioural Asymmetry	Chapters 11 & 12
October 7	Neurophysiology & Psychopharmacology	Chapters 4, 5 & 7
October 14	Thanksgiving (no lecture)	
October 21	Sensory Systems & Motor Function	Chapters 8 & 9
October 28	Cortical Functions: Occipital & Parietal Lobes	Chapters 13 & 14
November 4	Cortical Functions: Temporal & Frontal Lobes	Chapters 15 & 16
November 11	Higher Functions: Attention, Learning & Memory	Chapters 18 & 22
November 18	Higher Functions: Language, Emotion & Spatial Ability	Chapters 19 to 21
November 25	Neurological & Psychiatric Disorders	Chapters 17, 26, 27
December 2	Neuropsychological Assessment, Recovery, & Rehabilitation	Chapters 25 & 28